Circle graphs and monadic second-order logic
نویسندگان
چکیده
منابع مشابه
Circle graphs and monadic second-order logic
A circle graph is the intersection graph of a set of chords of a circle. If a circle graph is prime for the split (or join) decomposition defined by Cunnigham, it has a unique representation as a set of intersecting chords, and we prove that this representation can be defined by monadic second-order formulas. By using the (canonical) split decomposition of a circle graph, one can define in mona...
متن کاملGraph equivalences and decompositions definable in Monadic Second-Order Logic. The case of Circle Graphs
Many graph properties and graph transformations can be formalized inMonadic Second-Order logic. This language is the extension of First-Order logic allowing variables denoting sets of elements. In the case of graphs, these elements can be vertices, and in some cases edges. Monadic second-order graph properties can be checked in linear time on the class of graphs of tree-width at most k for any ...
متن کاملGroups, Graphs, Languages, Automata, Games and Second-order Monadic Logic
In this paper we survey some surprising connections between group theory, the theory of automata and formal languages, the theory of ends, infinite games of perfect information, and monadic second-order logic.
متن کاملPrefix-Recognisable Graphs and Monadic Second-Order Logic
We present several characterisations of the class of prefix-recognisable graphs including representations via graph-grammars and MSO-interpretations. The former implies that prefix-recognisable graphs have bounded clique-width; the latter is used to extend this class to arbitrary relational structures. We prove that the prefix-recognisable groups are exactly the context-free groups. Finally, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Logic
سال: 2008
ISSN: 1570-8683
DOI: 10.1016/j.jal.2007.05.001